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Scaling limit of the Ising model in a field
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The dilute A3 model is a solvable interaction round a face model with three local states and adjacency
conditions encoded by the Dynkin diagram of the Lie algebraA3. It can be regarded as a solvable spin-1 Ising
model at the critical temperature in a magnetic field. One therefore expects the scaling limit to be governed by
Zamolodchikov’s integrable perturbation of thec51/2 conformal field theory. Indeed, a recent thermodynamic
Bethe ansatz approach succeeded in unveiling the corresponding E8 structure under certain assumptions on the
nature of the Bethe ansatz solutions. In order to check these conjectures, we perform a detailed numerical
investigation of the solutions of the Bethe ansatz equations for the critical and off-critical models. Scaling
functions for the ground-state corrections and for the lowest spectral gaps are obtained, which give very precise
numerical results for the lowest mass ratios in the massive scaling limit. While these agree perfectly with the
E8 mass ratios, we observe one state that seems to violate the assumptions underlying the thermodynamic
Bethe ansatz calculation. We also analyze the critical spectrum of the dilute A3 model, which exhibits
excitations with a finite gap on top of the massless spectrum of the Ising conformal field theory.
@S1063-651X~97!04204-9#

PACS number~s!: 05.50.1q, 11.25.Hf, 75.10.Hk
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I. INTRODUCTION

The Ising model@1# is, without doubt, one of the mos
frequently studied and best understood lattice models of c
sical statistical mechanics. Although Onsager’s solution@2#
of the two-dimensional~2D! Ising model without externa
field dates back half a century already, no analytic solut
of the 2D Ising model in a magnetic field has been found

However, the situation is somewhat different if cons
ered from the viewpoint of field theory. The critical 2D Isin
model corresponds to thec51/2 conformal field theory
~CFT! @3–6# of a massless Majorana fermion. It wa
Zamolodchikov @7–9# who noticed that a ~symmetry-
breaking! perturbation of this CFT with the relevant sp
density operator @which has conformal dimension
(D,D̄)5(1/16, 1/16)# preserves infinitely many conserva
tion laws and therefore leads to an integrable quantum fi
theory. The corresponding minimal theory contains ei
massive particles with factorized~purely elastic! scattering
@10–15#; the particle masses and theS-matrix elements are
related to the exceptional Lie algebra E8.

This integrable field theory describes an appropriate s
ing limit of the 2D Ising model in a magnetic field. Numer
cally, the predictions for the lowest mass ratios have b
verified by several authors@16–20#. As these results rely on
relatively small size transfer matrix calculations or on Mon
Carlo simulations, they provide rather crude checks for
lowest mass ratios only. Furthermore, the larger masses
not be obtained directly as these lie above the two-part
threshold of the lightest particles and hence are buried in
continuum of scattering states. However, one can extrac
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direct information about the higher masses and the scatte
amplitudes from the finite-size behavior of the lower mas
@21,20#. Another, rather different, approach employs a tru
cated conformal Hilbert space@22,23#, which, however, does
not make the connection to the lattice model.

Similar theoretical and numerical investigations have a
been performed for a variety of lattice models such as
eight-vertex model@24#, the quantum Ising chain@16#, the
Lee-Yang model@22#, the three-state Potts model@25#, the
tricritical Ising or the Blume-Capel model, respectively@26–
28#, the Ashkin-Teller model@29#, the Z(N) models @30#,
and the integrable restricted solid-on-solid models@31#. Re-
cently, this has been extended to the study of form fact
and correlation functions@32–37# and nonintegrable pertur
bations@38#.

The discovery of a new class of lattice models@39–41#
that are solvable in the presence of a symmetry-break
field @40# has changed the situation considerably. Althou
we still cannot solve the 2D Ising model in a magnetic fie
we now know a solvable model~the so-called dilute A3
model! that belongs to the same universality class: it ha
critical point of Ising type@40,42#, and it is solvable in a
symmetry-breaking field that corresponds to the spin den
perturbation of the CFT@43#. Therefore, one expects thi
model to show the same properties in the scaling limit as
nonintegrable Ising model in a magnetic field. The dilu
A3 model is a spin-one Ising model~i.e., with three local
states, saysP$11,0,21%) with interactions between the
four spins on the corners of an elementary square of
lattice.

The diluteAL models are solvable by the Bethe ansa
~BA! @44,45#. By a thermodynamic Bethe ansatz~TBA! ap-
proach@44#, the mass ratios andS matrix of the E8 field
theory have been obtained. However, this approach relie
assumptions on the nature of the BA solutions, which co
5011 © 1997 The American Physical Society
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5012 55UWE GRIMM AND BERNARD NIENHUIS
not be substantiated by numerical solution of the BA eq
tions ~BAE! at criticality. Connections between the A3
model and the exceptional Lie algebra E8 are also revealed
by the existence of corresponding Rogers-Ramanujan ide
ties @46#.

For our numerical investigation of the off-critical BAE
our main motivation was to check the assumptions on
conjectured string structure of the BA solutions. This cou
be achieved for the states with lowest masses, yielding a
same time very accurate numerical results not only for
mass ratios, but also for the complete scaling functio
However, we also foundone discrepancywith the predic-
tions of Ref. @44#. Within the range of scaling paramete
values considered, the characteristic string type for a par
of massm4 does not match the proposed structure.

As a by-product of our investigation, we found that t
critical spectrum also containsmassiveexcitations besides
the well-known conformal spectrum. This is one prope
that distinguishes the dilute A3 model from the Ising model
which does not have such excitations. However, this does
contradict universality as that only concerns the univer
properties of the systems in the vicinity of the critical poin
which are the same for both models. The BA solutions c
responding to the massive excitations show the same typ
strings as those conjectured for the massive scaling li
Already for relatively small systems, these solutions lie ve
close to singularities of the BAE, which makes the numeri
treatment difficult. Estimates of the corresponding mass
tios, which show no resemblance to the E8 structure, are
presented.

This paper is organized as follows. In Sec. II, the dilu
A3 model is introduced and the BAE are presented. T
critical spectrum predicted by CFT and the behavior in
massive scaling limit are described. Furthermore, the
-
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sumptions about the form of the BA solutions formulated
Ref. @44# are summarized.

Section III contains the results of our numerical inves
gations. After a brief description of our numerical approa
we commence with the critical case, where not only are
scaling dimensions predicted by CFT considered, but a
additional massive excitations in the spectrum are identifi
Then, we show how the BA solutions behave as one g
away from criticality. Finally, we present our numerical sca
ing functions for the lowest gaps and the numerical res
for the mass ratios in the massive scaling limit.

II. THE DILUTE A 3 MODEL

Because an immediate specialization to the A3 case does
not considerably simplify the equations, we keep the fi
part of this section on a more general level and consider
dilute AL models. A detailed discussion of another memb
of this series, the dilute A4 model, will be presented else
where@47#.

The dilute AL models are IRF~interaction round a face!
models@48# of RSOS~restricted solid-on-solid! type @49# on
the square lattice with adjacency conditions encoded by
Dynkin diagram of the Lie algebra AL . In contrast to the
usual~nondilute! RSOS models built on this adjacency gra
~these are the Andrews-Baxter-Forrester models@49#!, the
effective adjacency graph of the dilute AL model contains
loops that connect each node to itself, see Fig. 1. In ot
words, one considers configurations ofL local states or
‘‘heights’’ ~labeled 1,2,. . . ,L) on the vertices of the squar
lattice subject to the additional requirement that states
neighboring~adjacent! lattice sites may differat mostby 1.
One then defines a statistical model by assigning Boltzm
weights to the elementary plaquettes~faces! of the lattice.

The face weights of the dilute AL models are@40#
WS a a

a a
UuD 5

q1~6l2u!q1~3l1u!

q1~6l!q1~3l!
2SSa11

Sa

q4~2al25l!

q4~2al1l!
1
Sa21

Sa

q4~2al15l!

q4~2al2l! Dq1~u!q1~3l2u!

q1~6l!q1~3l!
,

WS a61 a

a a
UuD 5WS a a

a a61
UuD 5

q1~3l2u!q4~62al1l2u!

q1~3l!q4~62al1l!
,

WS a a

a61 a
UuD 5WS a a61

a a
UuD 5SSa61

Sa
D 1/2 q1~u!q4~62al22l1u!

q1~3l!q4~62al1l!
,

WS a a61

a a61
UuD 5WS a61 a61

a a
UuD 5S q4~62al13l!q4~62al2l!

q4
2~62al1l!

D 1/2 q1~u!q1~3l2u!

q1~2l!q1~3l!
,

WS a61 a

a a71
UuD 5

q1~2l2u!q1~3l2u!

q1~2l!q1~3l!
,

WS a a71

a61 a
UuD 52SSa21Sa11

Sa
2 D 1/2 q1~u!q1~l2u!

q1~2l!q1~3l!
,

WS a a61

a61 a
UuD 5

q1~3l2u!q1~64al12l1u!

q1~3l!q1~64al12l!
1
Sa61

Sa

q1~u!q1~64al2l1u!

q1~3l!q1~64al12l!

5
q1~3l1u!q1~64al24l1u!

q1~3l!q1~64al24l!
1SSa71

Sa

q1~4l!

q1~2l!
2

q4~62al25l!

q4~62al1l! Dq1~u!q1~64al2l1u!

q1~3l!q1~64al24l!
.

~2.1!
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55 5013SCALING LIMIT OF THE ISING MODEL IN A FIELD
Here,a51,2, . . . ,L labels the heights, and the possible v
ues of the variablel are determined byL @40#. The crossing
factorsSa are given by

Sa5~21!a
q1~4al!

q4~2al!
~2.2!

andq1(u), q4(u) are standardq functions of nomeq with
uqu,1 @50#. These face weights satisfy the Yang-Bax
equation and therefore lead to an integrable lattice mo
The corresponding row transfer matrices@48# for a fixed
value of q form a one-parameter commuting family in th
spectral parameteru.

FIG. 1. Effective adjacency diagram of the dilute A3 model.
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In general, the dilute AL models have four differen
branches for any value ofL @40#, distinguished by two pos-
sible values ofl with two regimes each for the spectr
parameteru. Here, we are only interested in the dilute A3
model (L53) in a particular branch@40,42,44# where the
model behaves like the Ising model in a magnetic field. F
this case,l55p/16 and the spectral parameteru lies in the
interval 0,u,3l, in which the Boltzmann weights~2.1! are
positive. The spectral parameter controls the spatial ani
ropy of the weights, with the isotropic point atu53l/2. The
spin statessP$11,0,21% are given bys5a22. It is the
parameterq that acts like a magnetic field, breaking th
s→2s symmetry; and the Ising critical point corresponds
q50.

A. Bethe ansatz equations

The eigenvaluesL(u) of the row transfer matrix for a
system of sizeN with periodic boundary conditions have th
following form @44,45#:
L~u!5v l S 2
q1~u22l!q1~u23l!

q1~2l!q1~3l! D N)
j51

N
q1~u2uj1l!

q1~u2uj2l!
1S 2

q1~u!q1~u23l!

q1~2l!q1~3l! D N)
j51

N
q1~u2uj !q1~u2uj23l!

q1~u2uj2l!q1~u2uj22l!

1v2l S 2
q1~u!q1~u2l!

q1~2l!q1~3l! D N)
j51

N
q1~u2uj24l!

q1~u2uj22l!
, ~2.3!

wherev5exp@ip/(L11)#, and where theuj , j51, . . . ,N, form a solution of the set ofN coupled BAE:

v l S q1~uj2l!

q1~uj1l! D
N

52)
k51

N
q1~uj2uk22l!q1~uj2uk1l!

q1~uj2uk12l!q1~uj2uk2l!
. ~2.4!
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Here, l 51, . . . ,L labels a sector related to the braid lim
eigenvalues of the row transfer matrix at criticality (q50).
Whereas it is believed to be true that all eigenvalues of
transfer matrix are of the form~2.3!, the converse is certainly
wrong ~at least off criticality! — the BAE ~2.4! in general
allow for many additional solutions that do not correspond
proper eigenvalues of the transfer matrix. For any num
cally found solution of Eq.~2.4! one thus has to chec
whether it gives a proper eigenvalue of the transfer ma
~see Sec. III below!.

Theq functionq1(u) shows the~quasi! periodicity prop-
erties@50#

q1~u1p!52q1~u!5q1~2u!, ~2.5a!

q1~u1pt!52
1

q
e22iuq1~u! ~2.5b!

whereq5exp(ipt) (0,q,1) with tP iR. Consider a solu-
tion $u1 , . . . ,uN% of the BAE ~2.4! in sector l . Clearly,
nothing is changed if a multiple ofp is added to any of the
rootsuj .
e

o
i-

x

More interesting is the result of addingnpt (nPZ) to a
root uj . In this case, one obtains a solution of Eq.~2.4! with
v l replaced by exp(4nil)vl . Moreover, from Eq.~2.3! it is
evident that these two solutions correspond to the same
genvalue. This means that the ‘‘sectors’’l 51, . . . ,L lose
their significance in the off-critical case (qÞ0) since we can
always adjustl by adding or subtracting suitable multiple
of pt to some of the roots. Of course, this also yields ma
possibilities in which the phase factors cancel, and hence
~2.4! is recovered without any alteration, which means tha
single solution of the BAE can be presented in many wa
differing by addition and subtraction of suitable multiples
pt to some of the roots.

For the case of interest, it turns out that the largest eig
value L0(u) of the transfer matrix is given by a purel
imaginary solution of the BAE~2.4! in the sectorl 51.
Therefore, in place of the rootsuj , we prefer to use
v j5 iu j in what follows; thus the largest eigenvalue corr
sponds to a set of real BA rootsv j . General solutions to the
BAE will, however, involve complex roots, which in th
large-N limit typically arrange themselves into so-calle
strings ~subsets of roots with approximately the same r
part, in terms of thev j ). This is shown schematically in Fig
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5014 55UWE GRIMM AND BERNARD NIENHUIS
2, where the horizontal line represents the real axis. T
unknownsuj of the BAE are~up to a trivial transformation!
the momenta of excitations~quasiparticles! relative to a spe-
cific eigenstate of the transfer matrix. The relation betwe
momentum and theuj is such that real values ofv j corre-
spond to real momenta. Therefore the strings are comple
of quasiparticles with the same real part of the momentu
and can thus be viewed as bound states of quasipartic
Note that the ‘‘string content’’ of a particular solution migh
well depend on the variableq, an example of this behavior
will be given in Sec. IIIC below.

B. Conformal spectrum at criticality

The dilute A3 model has a critical point of Ising type a
q50. Thus its critical limit~given byq50, N→`) is de-
scribed by thec51/2 CFT with scaling dimensionsD
P$0, 1/16, 1/2%. This has drastic consequences for the spe
trum of the transfer matrix in the critical limit. Consider the
scaled spectral gaps

xj5
N

2p
ln~L0

~0!/L j
~0!!, ~2.6!

whereL j
(0) are the eigenvalues of the transfer matrix wit

periodic boundary conditions at the isotropic poin
u53l/2, L0

(0) being the largest eigenvalue. In the critica
limit, the spectrum of scaling dimensionsxj consists of
‘‘conformal towers’’ of states labeled by pairs
(D1r ,D̄1 r̄ ) with scaled energyxj5D1r1D̄1 r̄ , confor-
mal spin sj5D2D̄, and momentumpj5r2 r̄ , where r , r̄
PN0. They form representations of two commuting Virasor
algebras with central chargec51/2. The degeneracies of the
descendent states can be read off from the character fu
tions of their irreducible representations with highest weig
D. These can be written in the form@51#

x0~z!5 (
nPZ

z4n
21nPV~z2!

511z21z312z412z51••• ~2.7a!

x1/2~z!5 (
nPZ

z4n
213n1~1/2!PV~z2!

5z1/2~11z1z21z312z41••• ! ~2.7b!

x1/16~z!5z1/16)
m51

`

~11zm!

5z1/16~11z1z212z312z41••• !, ~2.7c!

FIG. 2. Sketch of a typical arrangement of the Bethe ansa
rootsv j in the complex plane.
e
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wherePV(z) is the generating function of the number
partitions

PV~z!5 )
m51

`
1

12zm
. ~2.8!

Moreover, the central chargec51/2 manifests itself in the
finite-size corrections of the largest eigenvalue@52#

2 ln~L0
~0!!5Nf01

pc

6N
1o~N21! ~2.9!

where f 0 denotes the bulk free energy foru53l/2.

C. Scaling limit

Taking into consideration the parameterq, one can ap-
proach the critical point by simultaneously performing t
two limits q→0 andN→` keeping the scaling variable

m5qN15/8 ~2.10!

constant. Here,m50 corresponds to the critical limit dis
cussed above, andm→` gives the massive limit where
Zamolodchikov’s E8 field theory results apply. In the sca
ing limit, the appropriately scaled spectral gaps

F j5q28/15ln~L0 /L j ! ~2.11!

become functions of the scaling variablem alone. For the
largest eigenvalue, we can also define a scaling function

F05q28/15@ ln~L0!1Nf0# ~2.12!

for the finite-size corrections of the largest eigenvalue, wh
f 05 limN→`@2 ln(L0)/N# is the bulk free energy again. Not
that the face weights~2.1! for nomeq and2q are related by
symmetry, thus it suffices to consider positive values of
nome.

In the massive limit (m→`), the ratios

Rj5
F j11

F1
~2.13!

approach the particle mass ratios of the corresponding m
sive field theory. The masses of the eight stable particles
proportional to the entries of the Perron-Frobenius eigenv
tor of the Cartan matrix of the Lie algebra E8, and their
ratios ~ordered by magnitude! are given by

tz



o
s

u
t
th
dy
th
he
ne
lly

by

in

.

-

val-
he
so
par-
o-
s of
he
ed.
tic
to
pe

the
m
ed

he
oint

um-
e
y of
ens,
ry
if-

ers
f

wo
eri-
or,
ach

ots

s
rac-
tral
lly,

tors

s
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m1 /m51,

m2 /m52 cos~p/5!51.618034•••,

m3 /m52 cos~p/30!51.989044•••,

m4 /m54 cos~p/5!cos~7p/30!52.404867•••,

~2.14!

m5 /m54 cos~p/5!cos~2p/15!52.956295•••,

m6 /m54 cos~p/5!cos~p/30!53.218340•••,

m7 /m58 cos2~p/5!cos~7p/30!53.891157•••,

m8 /m58 cos2~p/5!cos~2p/15!54.783386•••,

wherem5m1 defines the mass scale. The Dynkin diagram
E8 is shown in Fig. 3, where our labeling of nodes follow
the ordering of the masses.

In the TBA calculation of Ref.@44#, each of the corre-
sponding eight massive particles is associated to a partic
string in the BA solution. In addition, it is assumed tha
apart from these eight strings and the one-strings forming
vacuum solutions, no other string types occur in thermo
namically relevant quantities. With these assumptions,
TBA equations imply that the hole-type excitations in t
one-strings have vanishing density. The density of o
strings can be eliminated from the calculation, which fina
leads to the 838 scattering matrix of the E8 factorized scat-
tering theory@44#.

In Table I, the nine string types are given, labeled
t50,1, . . . ,8 in theorder used in Ref.@44#, which corre-
sponds to the usual labeling of the E8 Dynkin diagram rather
than that used in Fig. 3. From the data of Table I, the str
of type t consists ofn(t) roots of the form

FIG. 3. The E8 Dynkin diagram.

TABLE I. The nine thermodynamically significant string type
of Ref. @44# and the corresponding masses.

Mass t n(t) « (t) D (t)/5

0 0 1 0 ~0!

m1 1 2 1 ~21,1!
m2 7 4 0 ~23,21,1,3!
m3 2 4 0 ~24,22,2,4!
m4 8 5 1 ~212,28,0,8,12!
m5 3 6 1 ~27,25,21,1,5,7!
m6 6 7 1 ~214,26,22,0,2,6,14!
m7 4 8 0 ~210,28,24,22,2,4,8,10!
m8 5 10 1 ~213,211,27,25,21,1,5,7,11,13!
f

lar
,
e
-
e

-

g

vk
~ t !5v ~ t !1

ip

32
~Dk

~ t !116«k
~ t !!, ~2.15!

wherev (t) denotes the center of the string on the real line

III. NUMERICAL RESULTS

For the numerical treatment of the BAE~2.4! we used a
modified Newton method@53#. The calculations were per
formed in extended precisionFORTRAN ~with 16 byte real
numbers! on an IBM workstation.

As a first step, we solved the BAE at criticality (q50) for
small system size and compared the corresponding eigen
ues ~2.3! to those obtained by direct diagonalization of t
transfer matrix using high precision arithmetic. This al
served as a test of the performance of our programs. In
ticular, thecompleteset of solutions corresponding to zer
momentum eigenstates of the transfer matrix for system
size N<6 was obtained. In this way, the structure of t
solutions for the largest eigenvalues could be identifi
These solutions were followed as a function of the ellip
nomeq. The results of this analysis were then generalized
larger system size by looking for solutions of the same ty
that differ by additional real roots only.

Since we are mainly interested in the mass ratios in
scaling limit, we exclusively considered zero momentu
states. For solutions of the BAE, the momentum is obtain
from the eigenvalueL(0) ~2.3! at spectral parameteru50,
where the transfer matrix reduces to a shift operator. T
numerical data for the gaps are taken at the isotropic p
u53l/2.

Because we want to follow solutions for varyingq, which
means that we have to repeat the calculation for a large n
ber of values ofq, we limited ourselves to systems of siz
N<100. However, in certain cases the numerical accurac
the calculations becomes the major problem. This happ
for instance, for BA solutions that contain roots that are ve
close to singularities of the BAE, or for solutions where d
ferences between roots~or their real parts! become extremely
small. These situations typically show up if one consid
large values of the elliptic nomeq ~where the meaning o
‘‘large’’ depends on the system size!, but also for the mas-
sive excitations of the critical dilute A3 model discussed in
Sec. III B below. As far as we can see, there are only t
ways to go beyond the limitations imposed by these num
cal problems; either by using higher precision arithmetic,
to a lesser extent, by adjusting the program according to e
specific type of BA solution~which we did to some extent by
treating the ubiquitous complex conjugate pairs of BA ro
with imaginary parts close to611p/32 in a special way!.

A. Critical conformal spectrum

In the critical limit (q50,N→`), the largest eigenvalue
of the transfer matrix are organized according to the cha
ters of representations of the Virasoro algebra with cen
chargec51/2 as described in Sec. II B above. Schematica
the resulting values for the scaling dimensionsx in the zero-
momentum sector and their distribution into the three sec
labeled byl 51,2,3 are shown in Fig. 4.



n
re

o

n
r

d

g
-

r
s
a

it
u
o

he
for-

en-

d,
BA
ong
ns
,
ms
E,
-
we
we
–30

b-
s
ize
ms,
ust
n in

of
to
ans

m,
ined

o
e
n-

c
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In Table II, numerical values for the central charge an
the lowest scaling dimensions obtained from the correspo
ing solutions of the BAE for systems of different sizes a
presented. Here, Eq.~2.9! with the exact value of the bulk
free energy@54,55# of the dilute A3 model was used. All
zero-momentum states with a critical scaling dimension
x<7 have been found~compare Fig. 4!, except one of the
four excitations with conformal dimensions (1/1613,
1/1613) for which, despite some effort, we have not bee
able to find the corresponding solution of the BAE. In pa
ticular, this includes all cases without degeneracy, i.e., whe
only a single zero-momentum state of a certain scaling
mension occurs in the conformal tower.

To keep the three remaining BA solutions with scalin
dimensionx95611/8 apart, we distinguish them by sub
scriptsa, b, andc. Actually, it turns out that the two solu-
tions denoted byb andc yield the same eigenvalue even fo
finite systems, which remains true also off criticality. Thu
we do not need to consider them separately unless we
interested in the BA solutions, which of course are differen
see Sec. IIIC below.

While the numerical data are in perfect agreement w
the exact values, it should be noted that the string struct
of the critical BA solutions has no apparent similarity t
those proposed in Ref.@44#. We shall come back to this point
later.

FIG. 4. Low-energy part of conformal zero-momentum spe
trum for the critical dilute A3 model.
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B. Massive excitations at criticality

Analyzing the spectrum of largest eigenvalues of t
transfer matrix, one observes that, in addition to the con
mal spectrum discussed above, the spectrum containsmas-
siveexcitations. More precisely, these are states with eig
valuesLk

(0) for which the quantities

yk5 ln~L0
~0!/Lk

~0!! ~3.1!

converge to a nonzero limit~mass! asN→`; compare Eq.
~2.6! for the conformal states where this limit gives zero.

Apparently, a number of different masses is involve
which are again characterized by particular strings in the
solutions. Strikingly, the strings that we observed are am
those listed in Table I. We have found explicit solutio
containing strings of typet51, 2, 3, 4, and 7. In all cases
the roots forming these strings are — even for small syste
— located extremely close to the singularity of the BA
which they approach forN→`. This requires a careful nu
merical treatment, and severely limits the system sizes
can treat. With the numerical accuracy of our program,
were able to get reliable results for systems of at most 20
sites, depending on the particular solution.

An example is given in Table III. Here, the solutions o
tained by adding a number of ‘‘massive’’ two-string
(t51) to the ground-state solution of a system of s
N54 are presented. From the eigenvalues for larger syste
one can see that each additional ‘‘massive’’ two-string j
adds the same mass, thus substantiating our interpretatio
terms of massive particles.

Apparently, it is possible to add arbitrary numbers
these ‘‘massive’’ strings not only to the ground state, but
eachsolution corresponding to a conformal state. This me
that the spectrum~at the critical pointq50) contains infi-
nitely many copies of the complete conformal spectru
shifted with respect to the ground state by a mass determ
by the collection of ‘‘massive’’ strings.

As to the observed ‘‘massive’’ strings, they fall into tw
classes: fort51, 3, and 7, we have a single solution of th
BAE, whereas fort52 and 4 the solutions belong to eige
values that are doubly degenerate~for finite systems!. Label-
ing the masses associated to the ‘‘massive’’ string typet by
Mt , we obtain the numerical estimates

M7 /M1'1.85186, M3 /M1'3.17213 ~3.2!

-

7.942
7.196
7.030
7.013
7.007
TABLE II. Finite-size approximants for central chargec and smallest scaling dimensionsxj .

N c x1 x2 x3 x4 x5 x6 x7 x8 x9a x9b,c x10

10 0.499681 0.125080 1.014498 2.196 3.148 4.272 4.417 5.449 6.608 6.771 6.804
20 0.499920 0.125020 1.003543 2.142 3.034 4.062 4.191 5.098 6.142 6.274 6.274
50 0.499987 0.125003 1.000563 2.128 3.005 4.010 4.135 5.015 6.022 6.148 6.148
75 0.499994 0.125001 1.000250 2.126 3.002 4.004 4.130 5.007 6.010 6.135 6.135
100 0.499997 0.125001 1.000141 2.126 3.001 4.002 4.128 5.004 6.005 6.131 6.131

` 1/2 1/8 1 211/8 3 4 411/8 5 6 611/8 611/8 7
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TABLE III. Example of Bethe ansatz solutions at criticality in sectorl 51, which differ from the ground-state solution for system si
N54 by a number of ‘‘massive’’ two-strings. Here,s5 ip/32.

N54 N56 N58 N510 N512 N514

1.977 471 499 1.980 014 437 1.982 321 219 1.984 408 860 1.986 312 526 1.988 062 91

0.575 364 766 0.577 361 036 0.579 176 248 0.580 821 977 0.582 324 931 0.583 708 69

20.105 369 741 20.105 850 465 20.106 289 271 20.106 688 316 20.107 053 693 20.107 390 875

20.886 306 204 20.888 679 105 20.890 833 363 20.892 784 131 20.894 563 861 20.896 200 997

20.000 000 0726 0.020 936 0976 0.035 854 3256 0.047 525 7116 0.057 153 9746
10.999 999 764s 10.999 999 615s 10.999 999 489s 10.999 999 373s 10.999 999 263s

20.020 936 2946 20.000 000 1326 0.014 769 5656 0.026 242 9696
10.999 999 730s 10.999 999 570s 10.999 999 459s 10.999 999 320s

20.035 854 5566 20.014 769 8696 0.000 000 1716
10.999 999 719s 10.999 999 564s 10.999 999 444s

20.047 525 9696 20.026 243 3046
10.999 999 712s 10.999 999 563s

20.057 154 2566
10.999 999 706s
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M2 /M1'1.78, M4 /M1'3.78 ~3.3!

for the ratios of the masses with respect to the smallest m
that is associated to the two-string (t51). Note that these
numbers are calculated from the eigenvalues of the tran
matrix with spectral parameteru53l/2.

This situation is similar to what is observed in the Hu
bard model, where one has two types of excitations:
called ‘‘holons’’ ~carrying charge but no spin! and
‘‘spinons’’ ~carrying spin but no charge! @56,57#. Generi-
cally, both excitations are massless, and the correspon
field theory consists of two coupledc51 CFT. However, if
the filling fraction ~number of electrons per lattice site! is
chosen to be precisely 1, the holons become massive w
the spinons stay massless. At low energies, this theor
then described by ac51 CFT with additional massive exci
tations@58#.

C. Bethe ansatz roots off criticality

As mentioned above, the string structure of the BA ro
at criticality does not seem to agree with the predictions
Ref. @44#. However, if one follows a particular solution as
function of the nomeq, one finds that in many cases on
encounters singularities of the BAE where the string str
ture changes.

The simplest example is given by the second largest
genvalue, which corresponds to the conformal spin den
field with dimensions (1/16, 1/16) in the critical limit and t
the lightest massive particle in the massive scaling limit.
criticality, the corresponding solution of the BAE differ
from that of the largest eigenvalue~which contains real roots
v j only! by a single root with imaginary partp/2. However,
as can been seen from Fig. 5, asq is increased fromq50,
the complex root and one real root approach each other,
their real parts agree. At that point, the real parts of the
roots stay the same, but they move in the imaginary direc
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until they form a complex conjugate pair of roots~hence a
two-string!, which then persists for large values ofq.

Comparing systems of different size, this mechanism
ways stays the same, the additional real roots just play
role of spectators. Moreover, the transition from one str
type to another takes place at approximately the same v
of the scaling parameterm ~2.10! as the system size is in
creased. More precisely, the scaling parameter values
proach a nonzero limit as the system size tends to infin
This implies that althoughq→0 in the scaling limit, for large
values ofm ~and in particular for the massive scaling lim
m→`), the two-string is the relevant type of solution.

The same scenario applies to the other excitations we c
sidered. In Table IV, we compiled numerical values of t
nonreal BA roots for systems of sizeN5100, both at criti-
cality (q50, i.e., m50) and for a rather large valu
m'39.4 of the scaling parameter~corresponding to
q57/1000 forN5100). Note that forqÞ0 the real part of
the rootsv j can be shifted by multiples of2 ipt52 ln(q)
PR1 (0,q,1) as discussed in Sec. II A above. Using th
property, we arranged the solutions such that the value
the nonreal roots have a real part in the interval@0,2 ln(q)#.
Actually, as Table IV suggests, all nonreal roots are loca
in the vicinity of 2 ln(q)/2 for sufficiently large scaling pa
rametersm. This also distinguishes these solutions from t
‘‘massive’’ strings at criticality considered above, who
centers are located close to the origin. Furthermore, the
ues of the nomeq where changes in the string patterns f
N5100 occur are also indicated in Table IV. All five single
particle states show at least one such point, whereas som
the two-particle states do not change asq is varied.

Although the relation between the scaling exponents
one end and the content of massive particles on the oth
determined by the field theory, we are not aware that it
been calculated. Our results given in Table IV give an u
ambiguous connection for the lowest states, but they do
suggest an obvious pattern that can be generalized to
higher excitations.
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FIG. 5. Solution of BAE for the second largest eigenvalue for varying nomeq. Thick lines denote the real parts@normalized by
2 ln(q)# and thin lines the imaginary parts~in units ofp) of the BA roots.
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Comparing with the proposed string types of Ref.@44#
given in Table I and by Eq.~2.15!, one finds that the solu
tions for large scaling parameter agree with the predicti
apart from the two states that contain a particle of m
m4. Here, in place of a five-string with imaginary par
6p/4, 63p/8, andp/2, the solution found numerically on
first view looks more like a seven-string with imaginary pa
6p/32,67p/32,613p/32, andp/2. However, in compari-
son to the other single-particle states, the real parts of
roots forming this ‘‘string’’ are quite far apart, which migh
be an indication of another change of pattern occurring
larger value ofq, which of course we cannot exclude on th
basis of our numerical data.

Let us have a closer look at the single particle state w
massm4. Figures 6 and 7 show the BA roots of the corr
sponding solutions for systems withN510 andN520 sites,
respectively. For convenience, we plotted the real and im
nary parts of the roots, normalized by2 ln(q) and byp as in
Fig. 5, againstm8/155q8/15N. There are two obvious point
~indicated by the arrows in Figs. 6 and 7! where nonanalyt-
icities occur at approximately the same value of the sca
parameter for the two different sizes. These singularities
associated with the coincidence of two of the roots. Ho
ever, Fig. 6 may suggest that another change will occur
larger value ofm than numerically accessible by our ro
tines, as the real parts of one real root and one of the t
strings approach each other. But, comparing with the sa
region of Fig. 7, no indication of this behavior remains, a
the same holds true for the larger systems~up to N5100)
that we examined. From this, we conclude that either ther
no further change in the string pattern, or it has to occur
a very large value of the scaling parameterm, which, how-
ever, seems rather unlikely to us.

Though this result is somewhat inconclusive, let us exa
ine the string pattern of this solution in more detail. In pa
s
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ticular, we are interested in the question of whether there
holes in the one-strings in this case. To see this, we cons
the ‘‘phase function’’

w~v !5
1

2p i
lnF2v2l S q1~ iv1l!

q1~ iv2l!D N
3)

k51

N
q1~ iv2 ivk22l!q1~ iv2 ivk1l!

q1~ iv2 ivk12l!q1~ iv2 ivk2l! G , ~3.4!

which is basically the logarithm of the BAE~2.4!, but now
vk denotes the roots of our particular BA solution, and w
considerw as a function of the complex variablev. By defi-
nition, w(v j )PZ for all the rootsv j , j51, . . . ,N. Restricted
to real values ofv, w(v) therefore takes integer values at a
real solutionsv5v jPR, hence for all one-strings.

Figure 8 showsw(v) for the solution under consideration
Here, the size of the system isN520, andq51/5. The hori-
zontal lines are drawn at integer values@the precise numbers
are not relevant as they depend on the choice of branc
Eq. ~3.4!#, and the crosses located on intersections of th
lines with the graph ofw(v) denote the position of the rea
roots. The vertical lines are placed at the real parts of
remaining seven nonreal roots. As observed above, the si
root with imaginary partp/2 lies somewhat separated fro
the three complex conjugate pairs, which are very close
gether~such that the three vertical lines appear as one thic
line in the figure!. Moreover, the location of this single roo
coincidespreciselywith a hole in the one-strings, which ma
seem to disagree with the findings of Ref.@44#. However, the
behavior of the roots as a function of parameters likeq sug-
gests that the roots with imaginary partp/2 are simply an
alternative locus of the one-string.

On the basis of the numerical data, it thus seems that
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TABLE IV. Numerically observed string solutions for systems of sizeN5100 for nomeq50 (m50) andq57/1000 (m'39.4).Only
the values of the nonreal rootsv j are given. Here,%52 ln(q)52ipt ands5 ip/32. Forthose roots whose real part is very close to%/2
or whose imaginary part is almost an integer timess, such that the number of digits given is not sufficient to see the slight differences
superscripts1 and2 indicate on which side the actual data lie. We also include ranges ofq values within which changes of the strin
patterns are observed. The three solutions that correspond to a critical scaling dimension of 611/8 are labeled by subscriptsa, b, andc,
where the latter two yield identical eigenvalues for finite systems.

(D1r ,D1r ) Mass Nonreal roots atq50 Nonreal roots atq57/1000 Pattern change

~0,0! 0

( 1
16,

1
16) m1 5.277 011116 s 0.500 0001%611.000 0002s 0.000 138–0.000 139

0.000 161–0.000 170

( 12,
1
2) m2 24.123 8566 7.024 170s 0.500 0002%6 4.999 988s 0.000 560–0.000 640

24.052 796116 s 0.500 0002%615.000 012s

~ 1
1611, 11611! m3 23.791 098116 s 0.500 0001%612.011 549s 0.000 440–0.000 450

3.719 808611.045 724s 0.500 0001%6 9.988 451s 0.000 580–0.000 640

~1211,1211! m4 23.517 907614.671 118s 0.485 956% 6 0.992 132s 0.000 340–0.000 350
23.458 4966 5.430 532s 0.486 904% 6 7.000 002s 0.002 900–0.002 950
3.981 241116 s 0.486 904% 612.999 998s

0.500 0001%116 s

~2,2! 2 m1 23.245 499610.982 954s 0.482 282% 611.000 0002s

3.237 651610.937 395s 0.517 718% 611.000 0002s

~ 1
1612, 11612! m11m2 23.282 380610.815 346s 0.500 0001%611.000 0002s 0.001 000–0.001 100

3.304 607610.953 718s 0.500 002% 615.000 054s 0.001 410–0.001 420
4.238 695116 s 0.500 002% 6 4.999 946s

~1212,1212! m5 23.356 336612.564 943s 0.500 0002%6 8.998 677s 0.000 800–0.000 900
23.326 6046 8.981 386s 0.500 0002%611.000 0002s 0.001 275–0.001 475
3.297 948116 s 0.500 0002%613.001 324s

(3,3) 2m1 22.875 085611.000 662s 0.455 576% 611.000 0001s

2.875 191611.000 554s 0.544 424% 611.000 0001s

~ 1
1613, 11613!a m11m3 22.890 111611.001 019s 0.500 0002%611.000 0001s 0.000 430–0.000 440

2.889 954611.000 849s 0.500 0001%611.928 013s 0.000 520–0.000 550
4.741 946116 s 0.500 0001%610.071 987s 0.003 750–0.004 100

~ 1
1613, 11613!b m11m2 23.555 5096 8.138 452s 0.471 689% 611.000 0001s 0.000 370–0.000 380

23.317 682116 s 0.517 536% 6 5.000 047s
2.889 954611.000 849s 0.517 536% 614.999 953s
4.741 946116 s

~ 1
1613, 11613!c m11m2 22.890 111611.001 019s 0.482 461% 6 5.000 047s

3.091 6736 5.267 222s 0.482 461% 614.999 953s
3.097 274614.605 702s 0.528 311% 611.000 0001s

~1213,1213! m11m4 23.447 8636 6.844 587s 0.485 373% 6 0.964 059s 0.003 800–0.003 850
23.399 457116 s 0.486 904% 6 7.000 017s
23.048 514611.049 729s 0.486 904% 612.999 983s
3.054 397611.080 356s 0.500 0001%611.000 0001s

0.500 0001%116 s
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string structure associated to the massm4 consists of the
rather complicated pattern of a seven-string involving th
complex conjugate pairs of roots~with imaginary parts
6p/32, 67p/32, and613p/32) and a neighboring root a
ip/2, which comes together with a hole in the one-stri
distribution. Of course, in the infinite size limit the distan
between the real parts of these roots becomes infinitesim
is not obvious what happens in the TBA calculation of R
@44# if their string typet58 ~see Table I! is replaced by the
observed pattern, especially as we did not see the str
e

. It
.

gs

associated to the three largest masses. Nevertheless, w
lieve that the main ideas underlying the TBA treatment
Ref. @44# are correct, and that only details of the calculati
would be affected.

Before we move on to a discussion of the scaling fun
tion, two short remarks regarding the BA solutions are
order. It should be noted that the ‘‘massive’’ strings me
tioned previously in Sec. III B, which yield the massive e
citationsat criticality, do not undergo similar changes. The
strings are always located very close to singularities of
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FIG. 6. Solution of BAE corresponding to the single-particle state with massm4 in the scaling limit. The system size isN510. Thick
lines denote the real parts@normalized by2 ln(q)# and thin lines the imaginary parts~in units ofp) of the BA rootsv j . For each real part,
the numbers in square brackets give the~approximate! imaginary parts~in units ofp/32) for large values of the scaling parameterm. The
arrows indicate the positions of the singularities.

FIG. 7. Same as Fig. 6, but for system sizeN520. For clarity, the numbers in square brackets have been omitted for all real ro
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FIG. 8. The phase functionw(v) @Eq. ~3.4!# for the solution of BAE corresponding to the single-particle state with massm4 in the scaling
limit. The system size isN520,q51/5. Horizontal lines are drawn at integer values, crosses at intersections with the graph ofw(v) denote
the real roots, and vertical lines indicate the positions of the real parts of the other seven roots.
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BAE, and move even closer as the nomeq is increased.
Moreover, their centers lie at the origin~see e.g., Table III!,
whereas for the states belonging to the E8 integrable field
theory the strings cluster around the value2 ln(q)/2. Finally,
let us mention that a similar behavior of BA roots has
cently been observed in the solution of theXXZ Heisenberg
chain, where the boundary twist acts as the varying par
eter @59#.
-

-

D. Scaling functions and mass ratios

Let us now turn to the results for the scaling functio
F0(m) @Eq. ~2.12!# andF j (m) @Eq. ~2.11!#. For the latter, all
zero-momentum states with a critical scaling dimension
x<7 are considered, except the one missing excitation w
conformal dimensions (1/1613, 1/1613). In all cases, we
use data from systems of sizeN550, 75, and 100. For thes
FIG. 9. Scaling functionF0(m) @Eq. ~2.12!# for the largest eigenvalue obtained from systems of sizeN550, 75, and 100. Here, the
logarithm ofF0(m) is plotted againstm8/155q8/15N @Eq. ~2.10!#.
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FIG. 10. Scaling functionsF j (m) @Eq. ~2.11!# for the excitations obtained from systems of sizeN5100.
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sizes and the values ofq we considered, it turns out that th
corrections to scaling are so small that one can hardly
ognize them in our figures.

In Fig. 9, the~natural! logarithm ofF0(m) @which as de-
fined in Eq. ~2.12! is positive# is shown as a function o
c-
m8/155q8/15N @Eq. ~2.10!#. Apart from the behavior for smal
q, the plot is nicely linear, showing the exponential decre
of F0 as a function ofm8/15 down to about exp(260) where
the difference between the eigenvalues for the finite si
and the bulk limit value becomes smaller than our numer
FIG. 11. Ratios of scaling functionsRj (m) @Eq. ~2.13!#. The individual data points shown stem from systems of sizeN550, 75, and
100. Subscriptsa, b, c distinguish different solutions with identical critical scaling dimensions. The E8 mass ratios are indicated.
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TABLE V. Ratios of scaled gaps for three values of the scaling parameterm.

m N R1 R2 R3 R4 R5 R6 R7 R8a R8b,c R9

10 1.618 749 1.983 943 2.403 558 2.083 461 2.616 910 2.910 107 2.317 908 3.123 561 2.811 391 3.
20 1.618 037 1.983 923 2.403 649 2.081 017 2.617 335 2.930 942 2.320 478 3.086 893 2.781 193 3.

10 50 1.618 024 1.983 977 2.403 797 2.079 804 2.617 468 2.934 096 2.314 580 3.078 762 2.773 762 3.
75 1.618 024 1.983 984 2.403 815 2.079 550 2.617 482 2.934 583 2.313 631 3.077 950 2.772 773 3.
100 1.618 025 1.983 990 2.403 834 2.079 551 2.617 497 2.934 617 2.313 523 3.077 537 2.772 605 3.

10 1.623 692 1.989 446 2.412 441 2.017 536 2.623 691 2.958 322 2.085 027 3.006 016 2.671 041 3.
20 1.618 144 1.987 688 2.405 009 2.025 316 2.618 144 2.954 218 2.129 306 3.006 016 2.669 638 3.

20 50 1.618 034 1.987 597 2.404 866 2.026 212 2.618 034 2.954 289 2.132 554 3.003 342 2.669 034 3.
75 1.618 034 1.987 591 2.404 865 2.026 286 2.618 034 2.954 306 2.132 780 3.003 242 2.668 960 3.
100 1.618 034 1.987 589 2.404 865 2.026 315 2.618 034 2.954 311 2.132 871 3.003 212 2.668 941 3.

10 1.634 823 1.992 979 2.428 402 2.003 678 2.634 823 2.970 263 2.021 663 2.994 370 2.649 653 3.
20 1.618 424 1.988 671 2.405 376 2.012 146 2.618 424 2.956 329 2.071 838 2.992 915 2.644 399 3.

30 50 1.618 036 1.988 497 2.404 869 2.013 483 2.618 036 2.956 009 2.078 248 2.992 952 2.645 130 3.
75 1.618 034 1.988 489 2.404 867 2.013 604 2.618 034 2.956 007 2.078 742 2.992 957 2.645 220 3.
100 1.618 034 1.988 486 2.404 867 2.013 644 2.618 034 2.956 007 2.078 950 2.992 958 2.645 248 3.

` ` 1.618 034 1.989 044 2.404 867 2.000 000 2.618 034 2.956 295 2.000 000 2.989 044 2.618 034 3.4
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precision, which also proves the performance of our num
cal routines. Small deviations from scaling can be seen
larger values ofq.

The scaling functions for the excitationsF j (m) @Eq.
~2.11!# are displayed in Fig. 10. The curves shown are pie
wise linear plots connecting data points obtained from s
tems with N5100. For convenience, we again us
m8/155q8/15N @Eq. ~2.10!# on the horizontal axis. Qualita
tively, the scaling functions agree with the results of pre
ous numerical calculations for the Ising model in a magne
field @17–19# and with the results of the truncated fermion
space approach; compare the figures given in Ref.@23#. The
one-particle states can be recognized by their character
minima @17#. This becomes clearer when we consider th
ratios Rj (m) @Eq. ~2.13!#, which are presented in Fig. 11
Here, we again show individual data points that were
tained from systems of sizeN550, 75, and 100, which ob
viously were large enough to keep corrections to sca
small. The ratiosRj (m), given here against the scaling var
ablem, are labeled by the corresponding conformal dime
sions at criticality. We also indicated the single-particle m
ratios@Eq. ~2.14!# of the E8 field theory. Clearly, the agree
ment is convincing; more detail on the approach of the m
sive scaling limit is contained in Table V.

IV. CONCLUSIONS

The spectrum of the dilute A3 model has been studied b
numerical solution of the Bethe ansatz equations, both at
off criticality. This gives the correspondence between
lowest states of the conformal spectrum of the critical Is
model and those of the massive E8 field theory~note that the
connection given in Ref.@17# contains an obvious mistake!.

At criticality, the spectrum consists for one part of mas
less excitations described byc51/2 minimal CFT as in the
critical Ising model, but in addition to these it contains ma
sive excitations. Obviously, the masses of these excitat
are linked to the appearance of particular strings in the Be
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ansatz solutions, which can be interpreted as massive
ticles. In our numerical analysis, we have seen at least
such ‘‘massive’’ strings. It is intriguing that all these string
~showing up in solutionsat criticality! are among the con
jectured list of ‘‘thermodynamically significant string types
in the TBA analysis@44# of the massive scaling limit. This is
strongly suggestive of a connection between the Lie alge
E8 and the masses of these excitations.
However, these are not the states that yield Zamolodc

ov’s E8 field theory of the Ising model in a magnetic field
Those correspond to massless excitations at the critical p
which develop a mass due to the existence of the symme
breaking field. At criticality, the string structure of thes
states does not agree with the predictions of@44# — solving
this puzzle had been the original motivation for this wor
Our numerical results suggest a scenario that may solve
apparent contradiction: the string type of the relevant exc
tions undergoes a number of changes as the field is switc
on, and for large systems these reorganizations take pla
particular values of the scaling parameterm. Therefore, the
string structure entering the massive scaling limitm→` is
that observed for large values of the elliptic nomeq.

Numerically, we have been able to identify the sing
particle states up to the fifth mass, and a number of tw
particle states. Clearly, our results for the scaling functio
are in complete agreement both with the analytic values
the mass ratios and with earlier numerical work on the Is
model in a magnetic field. As to the Bethe ansatz solutio
apart from one exception, the string structure for large fi
is that conjectured in@44#. The one exception concerns th
string type associated to the particle of massm4. We found
two states that contain this particle — one being the sing
particle state with conformal dimensions (3/2, 3/2), t
other a two-particle state that also contains the lightest p
ticle and has scaling dimensions (7/2, 7/2) at criticality.
both cases, the observed string structures agree, but they
fer from the one proposed in@44#; compare Table IV. Of
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course, it cannot be ruled out completely that another cha
of string type appears at a larger value of the scaling par
eter, but we found no trace of such behavior for scal
parameters up tom&80. This clearly demands further clar
fication, and maybe the investigation of the dilute A4 model
can lead the way. In the scaling limit, this model is describ
by an E7 theory of factorized scattering, but has so f
eluded a TBA approach analogous to that of@44#. In this
case, we have been able to identifyall seven single-particle
states and observed interesting string solutions, details
be published soon@47#.

A number of interesting questions arise in connect
with the massive excitations of the critical dilute A3 model.
This is one property of the dilute A3 model that distin-
guishes it from the proper Ising model in a magnetic fie
since the critical Ising model does not show such excitatio
Moreover, we suppose that this phenomenon is not partic
to the specific model and will show up in the other dilu
models as well. It would be interesting to understand
physical nature of these excitations, and to obtain anal
predictions for the observed mass ratios. Also, their disp
,

a
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ar
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sion relations have not been studied because we concent
on momentum zero states throughout this work.

Note added.— Recently we learned of the work of Mc
Coy and Orrick@60#. From this we conclude that our massiv
excitations at criticality represent really the massless p
ticles at a nonzero value of the momentum. That we see th
in the zero-momentum sector as due to an extended Brillo
zone scheme, extending not from2p to p but a multiple of
that. This phenomenon had been observed before for the
citations of the antiferromagnetic three-state Potts quan
spin chain@61#.
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@52# H. W. J. Blöte, J. L. Cardy, and M. P. Nightingale, Phys. Re

Lett. 56, 742 ~1986!.
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